Summary of electron response at phi crack

University of Rochester Geumbong Yu, Yeonsei Chung

Event Selection

- \bigcirc MC: 1 million zewkae (Z \rightarrow ee)
- Data: bhelOd (single high pt electron)
- Require one electron by em object and the other track to reconstruct Z. (tower 1~8)
- No background assumed.
- Central tight electron cut on electron leg, pt > 20 GeV cut instead of et cut
- Cuts for the other track(2x2 Energy used):
 - Opposite charge to electron's, Had/Em < 0.5 E/p < 1.2, pt > 20 GeV, No other track within 0.4 cone

Track Had/Em & E/p distribution

Blue: track | relative phi | < 0.9

Green: track |relative phi|>=0.9
Data in marker while MC in line

Single tower E

Track momentum

Z mass after selection cut

Monte Carlo

Data

Z mass vs. relative phi in tower

Monte Carlo

Data
Energy 4-vec

Momentum 4-vec

Z mass distribution

Blue: track |relative phi|<0.9 Green: track |relative phi|>=0.9 Data in marker while MC in line

Momentum 4-vec

E/p vs relative position

- @ Good region required:
 - for E/p vs. rel. phi, |reta|<0.5 used.
 - for E/p vs. rel. eta, |rphi|<0.5 used.
- Relative position?
 - Scaled track hit position on CES face in eta or phi direction of a tower.

$$rphi(reta) = \frac{glob _phi(eta) - \frac{max_phi(eta) + min_phi(eta)}{2}}{\frac{max_phi(eta) - min_phi(eta)}{2}}$$

Track E/p vs. relative phi

Monte Carlo

Difference = (data)E/p - (mc)E/p

Data

Track E/p vs. relative eta

Monte Carlo

Difference = (data)E/p - (mc)E/p

Data

Aug 25 2005 Simulation Meeting University of Rochester Geumbong Yu, Yeonsei Chung

Electron E/p vs. relative phi

Monte Carlo

Data

Electron E/p vs. relative eta

Monte Carlo

Difference = (data)E/p - (mc)E/p

Data

(mc)E/p

Em object E/p vs. relative phi

Monte Carlo

Difference = (data)E/p - (mc)E/p

Data

(mc)E/p

Em object E/p vs. relative eta

Monte Carlo

Difference = (data)E/p - (mc)E/p

Data

(mc)E/p

Good region dependence in E/p vs. emobject phi

Good region dependence in E/p vs. emobject eta

Conclusion.

- No background study is done for this study.
- Comparing single tower energy divided by momentum of Monte Carlo with data shows a couple of % difference in central region but more discrepancy in high reta(rphi) region. Emobject shows good agreement between Monte Carlo and data.
- After reconstruction, the Monte Carlo agrees with data well by checking the E/p from emobject. Map or leakage correction for Cal data?

Backup plots

Zmass with different E/p cut

Good region dependence in E/p vs. track rphi

Good region dependence in E/p vs. track reta

Good region difference in E/p vs. electron rphi

Good region dependence in E/p vs. electron reta

E/p of west and east calorimeter

West & East

Monte Carlo described in line and Data in marker

Emobject E/p - single E/p

Aug 25 2005 Simulation Meeting

University of Rochester Geumbong Yu, Yeonsei Chung

Zmass vs. relative phi

Monte Carlo

E/p<2.0

Data

Aug 25 2005 Simulation Meeting

University of Rochester Geumbong Yu, Yeonsei Chung